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ABSTRACT

In Zhis work, we will present new algebraic eriteria for p04414ve nealness of
neal rational 5unctxonb and matrices, which are formulated entin
It is 54n4t shown how the Routh algorni
1o senve as a criterion for positive nealness. Due to the outstanding analytic sfms’
plicity of the Routh algonithm, this criterion yields an efficient numerical progg<
Once the Routh algonithm is successfully nre
wlated, the Huwwitz vensdion of positive realness is almost automatic.
detenminants are obtained, which provide explicit conditions for positive realnesd
often desined in the thecny of networks and systems,

Routh-Hwuuitz conditions.

dure fon testing positive nealness.

the proposed Routh-Hwunitz eriteria Leads
ability for machine caleulations,
Introduction

Since the concept of positive real functions
was introduced by Brune [1] in 1931, it not only
laid the basis for all of the realization theory
of electrical networks [2], but was subsequently
utilized in areas as diverse as absolute stability
and hyperstability, optimality and sensitivity of
dynamic systems, The appeal to positive real func-
tion formulation in these areas was based largely
upon the physical insight offered by the positive
real concept as well as the mathematical compact-
ness of the formulation. In applications, however,
the usefulness of the positive real concept ulti-
mately depends on the efficiency of the numerical
procedure for testing the positive real character
of a given function or matrix representing a net-
work or system of a considerable complexity. For
obvious reasons, the procedure shouid lead to sys~
tematic algebraic schemes which can readily be pro-
grammed for computer applications.

As known [2], the algebraic testing of the
positive real character of a rational function in-
volves two polynomial algorithms, namely the Routh
array and the Sturm method, which are performed by
two essentially different schemes {3]. While the
Routh array is executed by a simple recursive pro-
cess, the Sturm method requires a construction of
Sturm's functions by repeated polynomial divisions
which are inconvenient for numerical calcéulations.
Furthermore, certain nonsystematized additional
analysis is required in the Sturm method when poly-
nomials to be divided are not relatively prime, It
is surprising that only recently it has been shown
[4] how the well-known Routh array can be modified
to carry out the required Sturm’s procedure and,
therefore, perform the entire positive real test
by using the Routh algorithm,
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In this work, we will give a complete account
of the modified Routh algorithm for positive real-
ness and solve the important problem of singular
cases which was only briefly indicated in [4].

This will lead to a recursive, computer oriented
scheme with superior effectiveness over the pre-
sent numerical procedures for testing the positive
real character of real rational functions. An im-
portant by-product of this result is a solution of
the classical algebraic problem: the formulation
of necessary and sufficient conditions on the co-
efficients of a real polynomial under which the
polynomial has a certain number of real positive
zeros,

Another important aspect of this work lies in
the formulation of the general explicit conditions
for positive realness, It is remarkable that the
derived determinantal conditions are analogous to
the celebrated Hurwitz conditions. That such con-
ditions are not available despite a relatively
long history of the positive real concept is pro-
bably due to the automatic use of the Sturm method
which obscures the issue and discourages any attempt
in this direction,

Extension of the obtained criteria to the test-
ing of real rational matrices is straightforward
and is derived for the scattering matrix formula-
tion for obvious practical reasons. It is certain-
1y here that the proposed new test is by far the
most efficient scheme among the existing numerical
procedures for testing the positive real character
of real rational matrjces.

Fundamental Algebraic Problem

We start with a definition of the positive
real function [5]:

o b

Deginition 1: A real national function

G(s) = %{%%

with nelatively préme polynomials p(s) and q(s)
A48 called positive neal if and only if:

(i) the polynomial

(1)

f(s) = p(s) + q(s) (2)
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Remank 13 .If (3) is replaced by the strict inequa-
2 5/5:%..._ LA S
llty R S X
Re G(iw) > 0, for all real w, (4)

the function G(s) 1is said to be strnictly positive
neal,

As is customary, we call a function G(s) real
if the polynomials p(s) and q(s) have real coeffi-
cients, that is, they are real polynomials. Fur-
thermore, two polynomials are relatively prime if

"they have no common cancellable factors, and a

polynomial is said to be Hurwitz if it has all
zeros with negative real parts.

To establish the positive real character of a
given function, one applies the Routh or Hurwitz
test to verify (i) and Sturm's procedure to examine
(ii) of Definition 1. The Sturm procedure is
actually used to test the polynomial inequality

o(a?) = plwlafw) + pylalas(e) 20,
for all real w >0 (5)

with p(iw) = pr(”) + ipi(m) and q(iw) = qr(w) +
iqi(m) » which is obviously equivalent to (3).

The polynomial g(mz) is real and even. We assume
that the m polynomials in (1) are given as

pls) = I ps » als) = A ays’ (6)

where m > 2, and some of the coefficients Py and
q, may be missing but not p . Since 6(s) in (1)
is positive real if and only if G'](s) js positive
real, when m < 2 we examine G'](s) instead of G(s).
Therefore, (5) can be written as
n
g(wz) ) ngmZR >0, for all real v > 0,

where 2n = [even (m + 2)], which means that 2n is
equal to the largest even integer contained in
m+ 2, and

2k
+
92k = 20 (-])k TquZk-T ’ k = 0. 1,..., n. (8)
T=

In formula (8), the coefficients which are
missing in (6) are replaced by zeros.

From (7), we have the obvious preliminary
result:

Loma 1:  Polynomial g(mz) > 0 for alk neal v > 0
Aif and only i4 g(mz) £ 9y has no positive nreat
zenos of odd multiplicity and g(m12) > 0 fon some
w > 03 on g(mz) = gg 2 0.

Remank 2: Condition g(m12) > 0 for some wy > 0
can be replaced by either 9 > 0 (that 1is,

a(0) > 0), or 9p > 0 (that is, g(+=) > 0), which
are easy to verify., In the following, when
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when 9 T Gp = e T Gyy = 0. we can write

g(wz) = w21+291(w2) and consider the reduced poly=-

nomial g1(w2).

In case of the strict positive realness
(Remark 1), we will need:

Lemma 2: Polynomial g(wz) > 0 for all real w > 0
i and only if g(mz) has no real positive zernos and
g(u] ) > 0 for some wy >0

Therefore, the part (ii) of the above defini-
tion is reduced to the problem of finding the
necessary and sufficient conditions under which a
real even polynomial has no real positive zeros of
odd multiplicity or none at all. In the following
section, we will first solve the general problem:
determine the necessary and sufficient conditions
on the coefficients of a given real polynomial 8o
that the polynomial has a certain number of posi-
tive neal zenos, The solution of this problem will
be given by the Routh algorithm which is modified
as suggested in [6]. Then, we will extend the ob-
tained result to the even polynomials,

For now, it may be of interest to mention the
following trivial, but useful result [7] which is
derived from (7) and the well-known Decartes rule
of signs:

Theonem 1:  Polynomial g(uz) > 0 for atl neal w > 0:
(i) 4f
99 > O 95 >0, k=1, 2,i0s, N3 (9)
and (1) only if the total number of sign varia-

Zions dn the coefficients 9oy (k =0, 1,000, n)
48 even,

Inequalities (9) may be utilized when coeffi-
cients 9ok depend on parameters and one is in-

terested to find the region in the corresponding
parameter space such that g{w?) > 0 for all real
(L)>Oo

Modified Routh Algorithm

We first prove our general result:

Theorem 2: The numben w of distinet positive real
zernos of the real polynomial

k

n
hs)z '} hs“, h #0 (10)
(s) kZO kS s by #

m=n - V(-1 , -k e, gl (1)

whene V is the numben of sign variations in the
§inst column of the Routh array

-1

-1, (-D"h ... -hy g

D% G- Db g e oy (12)
ho



and h0 # 0,

Remark 3: We note that the first two rows of the
Routh array (12) are formed by the coefficients of
the polynomials h(-s) and h*(=s) = dh(-s)/ds.

To prove Theorem 2, we start with the well-
known ?turm theorem (Theorem 1, Chapter XV, Refer-
ence 3):

Theorem 3: The number v of the distinet positive
neal zenos of a real polynomial h(s) is
h'(s)
n = I — (13)
h(s)
whene 1 denotes the Cauchy index and
h'(s) = dh(s)/ds.

By using the properties of Cauchy indicies
[3] we will transform expression (13) until it
can be evaluated by the Routh algorithm. A hint
for this transformation 1ies in a theorem of
Stieltjes {Theorem 15, Chapter XV, Reference 3).

We assume that hy # 0, and rewrite (13) as

W hs) o ()
=1 ——
0 his) 9 hu?)
1..0 wh'(mz) I+mwh'(m2)
T o e cta—a—
27 h?) O ned)
n
) I khy w2k
. _]_I+°° wh‘(m ) . _]_I+°° k=1
-c 2 -0
2 h(a®) 27 gy (14)
z] hk w
k=

Following Routh, we compute the Cauchy index
in the last equation of (14) by the array (12) and
obtain (11), This proves Theorem 2.

Remank 4: The negular Routh array takes place when
none of the numbers in the first column of the
array vanish. A sdingufan array arises when: (a)
an element of the first column becomes zero, but
not all of the numbers in the corresponding row
are zero; and (b) all the numbers in a row of the
array vanish simultaneously. The case (a) is of
no importance and is resolved by standard techni-
ques [3]. The case (b) indicates that h(s) and
h'(s) have common zeros, that is, they are not
relatively prime which means that h(s) has mut-~
tiple zeros. We postpone the consideration of the
multiple zeros to the next section. For now, we
recall [3] that to continue the Routh algorithm

in case (b), it is necessary to replace the row
of zeros by the coefficients of the first deriva-
tive of the polynomial formed by the preceeding
row. We also note that the assumption h0 #0

means no loss of generality since when
h, = h] = e = hi = 0, we can write

h(s) = s1+]h](s) and consider the reduced polyno-
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mial hl(s).

Remark 5: Obviously, to determine the number of
negative real zeros of h(s), we apply Theorem 2
to the polynomial h(-s).

In case of the real even polynomial g(wz) of

(7), we replace Wt by w and form the Routh array:
n n-1
(-1) 99n (-1) Iona2 ses =0p Gy

n n-1
(-]) "gzn (']) (n - 1)92"_2 X "92

XX

: (15)
9

which was used in [4].
By applying Theorem 2 and the array (15) with
Remark 4, we get:

Conollany 1: The number w of the positive real
zenos of gw?) is

TN~ v[('])ngzno ('1)nn92no0'co 90]9 (16)

whene V 48 the number of sign variations in the
firnst column of the awnay (15).

We need immediately a more specific:

Conollany 2: A neal even polynomial g(wz) of de-
gree 2n no positive zeros (v = 0) if and onty
VE(-1)"g,s (=1)"ngysueunggl = . (17)
Remark 6: Since the polynomial g(wz) is even
and with real coefficients, the real zeros appear
in pairs and Corollary 1 yields immediately both
the real positive and real negative zeros (if such
zeros exist, Corollary 2),

Before we state our main result concerning the
positive real functions, let us recall the origi-
nal Routh test [3] used to test the Hurwitz charac-
ter of the polynomials with real coefficients,

This is needed for part (i) of Definition 1, Let
us consider the polynomial f(s) in (2) written as

e W
f(s) szo £S5 o fn# 0, (18)
where, according to (6), we have
fw = Pw + Oy » w=0,1, .so ,m (19)

Py # 0y and g =0 for w> g . As known [3], the

polynomial f(s) is Hurwitz if and only if in the
corresponding Routh array:

for m even _ fon m odd

fn fp2 e o fo Ty fo2 oo 2 T

a1 Tz eer fae1fnez ooe 3
N A (20)
fo fo

all elements of the first column are different
from zero and of like sign, that is,



VLf fqs oo s Fgl = 0 (21)

Now, by using Corollary 2, Lemma 2, and Re-
mark 4, we obtain directly:

Theonem 4: A neal national function
Gésg = q(s)/g(s) with nelatively prime pofLynomials
Q‘s and q(s) is strietly positive neal if and only
LA

(i) zhe polynomial f(s) produces a regular
Routh arnay (20) with

VD Foqs eee s Fo1 = 03 (21)

(11) the potynomiat g(w?) produces a Rowth
auay (15) with

VIC-D)"gpn0 (-1)"ngyns oev s gl =0 (17)

and 9 > 0.

This result was obtained in [4] and is con-
siderably simpler than the one derived in [9],
since the modified Routh array (15) proposed here
operates directly on the coefficients of polyno-
mial g(uz) and no intermediate steps are necessary.

For nonstrict positive realness of G(s), we
need to test the weaker polynomial inequality (7)
which allows for positive real zeros of g(wZ{ s0
far they are of even multiplicity (Lemma 1), We
will show immediately that the Routh array (15)
contains all the necessary informatign about multi-
ple real zeros of the polynomial a(w®) and that a
recursive algorithm for determining those multi-
plicities is available,

We remember first that the multiple zeros of
g(w?) are indicated by occurrence of zero rows in
the corresponding Routh array (Remark 4), Let us
enumerate the rows in the array (15) starting from
the top by j (j=0,1, ... , 2n) and the row
preceeding a zero row by j (v = 1, 25 eee 5 t)e
Let us also define

Ly - d) e vl 2, £ 41 (22)

\Y

n
v

with jo =1 and jt+1 = 2n + 1. For the number of

sign variations between the two consecutive rows
jv_] and jv. we will use the symbol Vv. Finally,

we denote by , the number of positive real zeros

the multiplicity v of the polynomial g(mz). The
number =, we determine using the general recurr-
ence formula .

Ty (nv - vv) - (n\)'ﬂ - vv+'|)o vETy 2000 EZ;‘;.

By applying Corollary 1, the formula (23) can
be readily verified. We need only to notice that
L is actually the difference between the num-

bers of positive real zeros corresponding to two
consecutive zero rows in array (15), and that the
multiplicity of each zero of the tested polyno-
mial is reduced by one each time we go from one
zero row to the next.

Now, according to Definition 1, Lemma 1, and
formula z23), we have:

Theorem 5: A neal national function
G(s) = a(s)/p(s) with nelatively prime polynomials
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p(s) and q(s) is positive real if and only if:

(i) atle the clements in the §inst cofumn of
the Routh arnay (20) produced by the polynomial
f(s) ane different from zero and of Like sign; and

(i) g&t the numbers m,, produced by the poly-
nomial g(w®) # gg and the Routh (15) are
equal to zero for odd v = 1, 3,..., Lodd (t +1);,
where t ﬁa the number of zeno nows in array (15),
and g(m-I ) > 0 fon some wy > 05 on g(wf) = 99 2 0.

In (i1) above, [odd (t + [); means the lar-
gest integer contained in (t +71),

Remank 7; 1If there are no zero rows (t = 0) in
array (15), then Theorem 5 is reduced to Theorem
4, In this case, LR V]. where no=n and

Vy =V (see Corollary 1).

Remank 8: Since recurrence formula (23) involves
only two consecutive rows at the time, the test
may be discontinued when we first encounter

, # 0 for odd v.

Remark 9: As shown in [10], if we form the first
two rows of the Routh array by the coefficients
of p(s) and q(s), then, p(s) and q{s) are rela-
tively prime if and only if there is no rows in
the array that vanish identically.

It is remarkable that with results obtained
in this section all one needs in testing positive
realness is the Routh Algorithm,

Modified Hurwitz Criterion

An alternative way to compute the Cauchy in-
dex in (14) is by the Hurwitz approach [3], which
yields explicit conditions for positivity of G(s)
in terms of its coefficients. The Hurwitz-like
solution is more appealing in cases where the
coefficients are not given numerically but depend
on parameters.

By using the Routh array (15), we can for-
mally generate the desired determinants:

by = (1) gy

n
(17190 (-1)"Nn - Ny,
An =
2 n n-1
(-1)"9,, (-1)""gn.2
. (24)
(-Dngyy (D" M0 =gy, a0
n n-1
(-]) 92n (—]) gzn_z s 2 4 0
0 (-])nngzn s 8 @ 0
B =
" n
0 (']) gzn s a8 0
. . ¢ s 90

which represent the first golumn of the array (1§).
zlqce Bon = 908on.1* by using Corollary 1 wearrive



P

The number = of the positive neal zeros

Theokeﬂ 6:
w®) is gdven by

of gl
TEn- V[('])ngznl A, AZ/A]""’ AZn-llAZn-Z' 90]

(25)

provided Aj #0,J=1,2,00042n -1, and g5 > 0.
This theorem can readily be proved by the tri-

angularization of the matrix corresponding to bon

which reduces it to the Routh matrix defined by
(15). This process is described in [3].

Remark 10: When some of the determinants in (25)
are equal to zero (singular case [3], but
Bonal # 0, in calculation of V for each group of A

(odd) successive zero determinants

(8, #0) Ay = e =8,y =0(8,,,4#0) (26)

we have to set:

V(Au/Au_], Au+1/Au..... AM+A+2/AU+A+])

a1)/2 .
= %-[A+2 - (_1)( )/ 51gn(AuAu+A+2/Au-1Au+A+1)]’
(27)
as shown in [3].

For the sake of completeness, let us consider
again the polynomial f(s) in (18) and recall [3]
that the polynomial is Hurwitz if and only if

V(£ 670 8p/870e0en 8 /80 1) = 0 (28)
where f, > 0. In (28),
8, = det [hev] s 2= 1, 25000y M (29)

are principal minors of the m x m Hurwitz matrix
H= hBy] whose elements are given by

hey = Tmeg-2y

and fw 0 forw<Oorw>m,

(30)

Now, by Theorem 6, Remark 10, and (28) we
obtain:

Theonem 7: A neal rational function )
G(s) = q(s)/p(s) with relatively prime polynomials
p(s) and q(sg is stnietly positive real if and
only if:

(1) V(fs 870 8p/8y00ees §,/8,.1) =0 (28)
whene fm > 0, 8101 # 03 and

(i1)
V[('])ngzno A]' Az/A]o-'-’ A2n-1/A2n-2’ 90] =n

(31)
where g5 > 0y 85 4 # 0.

Remank 11: if all the coefficients of f(s) are
positive, the condition (28) can be reduced to

v, 51’ 63""’ 6[odd (m)] =0
which is the well=known Lienard-Chipart result [31.

(32)
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As it was pointed out in [3], if the coeffi-
cients of the tested polynomial are given numeri-
cally, then the Routh algorithm is by far the
simplist procedure for computing the Hurwitz de-
terminants and executing the Sturm procedure,
Therefore, when testing a real rational function
with specified coefficients for possible positive
realness, the results of the preceeding section
are recommended,

Matrix Generalization

Extension of Theorem 5 to the matrix case is
desirable since it promises a positive real test
with a satisfactory analytic simplicity.

We start with [11]:

Deginition 2: A neal national m x m matrix G(s)
48 positive neal if and only if:

(i) G(s) has no poles with positive neal

(41) potes of G(s) on Re s = 0 are simple
and the corresponding residue matrnix in nonnega-
Lve definite Hemitian; and

(iii) 6(iw) + G*(iw) > 0 for all real w such
that iw 48 not a pole of Gliw).

To avoid complications involved in testing
the condition (ii) of Definition 2, we may per-
form certain matrix transformations and use the
well-known [11]:

Theonem 8: A neal national matrnix G(s) is posd-
tive neal if and only if§ the corresponding real
rotional scalterning matnix

s(s) = [6(s) - 1][&(s) + 117"

48 bounded real, that is,
(i) S(s) is anatytic in Re s > 0; and
(11) T - s*(iw)S(iw) > 0, for all neal w.(34)
Let us now consider the expression

F(s)

7ls)

where F(s) is a real polynomial m x m matrix and
f(s) is a real scalar polynomial relatively prime

(33)

[6(s) + 137! = (35)

to F(s). If we rewrite (33) as
-1 F(s)
S(s) =1 -2[6(s) +1I]7 =1« 2 — (36)
f(s)

and use (34) to form the Hermitian m x m polyno~
mial matrix

r(iw) = [F(iw) 201 = s*(iw)S(iu)] ,
we arrive immediately at:

Theonem : A neal national m x m matrnix G(s) 44
positive neal if and only if:

(1) the polynomial f(s)
Huwuwitz; and
(11) r(iw) > 0, for all neal w > 0 .,  (38)

Let us assume that the matrix r{iw) is of the
rank r, that is, there is an r-th order principal
minor of r'(iw) which is not identically zero and
all the principal minors of order r + 1 vanish

(37)

n

det [G(s) + I] 4s



identically. We denote by g(r)(mz) this r-th order

minor, and by g(e)(mz) the associated principal
minors of order 8 = 1, 2,..., * = 1, As is clear
from (37), the minors are real even polynomials
which can be written as

n
o) = kz: g {PNu¥ (39)

Now, to verify (38), we can use [5]:

Theorem 10¢ A Hemitian polynomial m x m maitrix
r{iw) of the nank r > 0 is nonnegative definite
forn all neal w > 0 if and only if: (a) for r > 1,
there 48 a sequence of the principal minons

g(e)(mz) ; 0’ 6 = .I. 2’050. r- ]. Auch M

'g(e)(wz) >0, for all real w 3_05

and 6 = 1, 2,.4., 3 and (b) for r =1, g(]
fon all real w > O.

Remark 12: In the trivial case r = 0, each ele-
ment of I'(iw) is identically zero and, therefore,
r(iw) is nonnegative definite for all real w. In

(40)
(w20

addition, we note that to test (38) by Theorem 10,

we can use without loss of generality [5] the
specific sequence of the principal minors

((2), 6 =1, 2,.,., r = 1, where each q¢®)(u?)

is obtained from g(r (wz) by deleting the first
r - 6 rows and columns. The specific sequence is
used in the following Theorem 11,

Finally, we can apply the modified Routh test
to each inequality (40) and with help of Theorem
10 and Remark 12 get from Theorem 9 our principal
result:

Theonem 11t A neal national m x m matrix G(s) 4s
positive real if and only if:

(i) all the elements in the §inst column of
the Routh array (20) produced by the polynomial
f(s) = det [G(s) +I] are different from zero and
o4 Like sign; and

(i1) akk the numbens R{e) produced by the
Routh annay (15) and each phincipal minon

g(e)(wz) £9ps 8 =1, 2,000, T, 0f the conrespond-

Aing matnix r{iw), are equal to zeno fon odd
v=1, 3,..., [odd(t, + 1)],where r 48 the rank of
r{iw) and t, is the fumber of the zero nows in the

anviay (15) generated by g(e)(wz). In addition,
g(e)(wez) > 0 for some wy > 0 and all

8 =1, 25 sesg Ts If g(e)(wz) = go(e)' then fon
r>1, 9 8, 0, and for r < 1, 9%

2 0.

We can actually avoid the matrix operations
involved in forming the scattering matrix, if we
wish to do so, and apply Theorem 11 directly to
the matrix G(s). This alternative is provided by:

Theorem 12: A neal rational m x m matrix

6(s) = Q(s)/p(s) with a neal polynomial m x m
matrnix Q(s) and a neal scalar polynomial p(s) re-
Latively prime to Q(s) is positive neal if and
only Lif:
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(1) zhe potynomial f(s) = det [G(s) + 1] is
Hwunitz; and
(1) the Hermitian m x m polynomial matrix
Aiw) = p*(iw)Q(iw) + p(iw)Q*(i ) satisdies the
Anequality :
A(iw) > 0, for all neal w > O,
If we rewrite (40) as

(41)

[p(iw) |12[6(iu) + G*(iw)] > O, for abe neat
w > 0 and note that
2[G(s) + G*(s)] =

(1 + G*(s)ILI - s*(s)S(s)ILT + G(s)],  (42)

then from Theorem 8 the necessity of (i) and (i)
of Theorem 12 is automatic., Conversely, since
det [G(s) + I] # 0, conditions (i) and (ii) of
Theorem 12 imply those of Theorem 8. Hence, in
Theorem 11, we.can use A(iw) instead of r(iw).

..An extension of this result to matrices that
are*functions of several complex variables is
possible, which is of considerable interest in
modern network theory.

Conclusion

The principal contribution of this work is a
unique and complete recursive algorithm for test-
ing the positive real properties of real rational
functions and matrices. The algorithm is entire=
1y based upon the familiar Routh-Hurwitz scheme
and, therefore, leads to a computer oriented pro-
cedure with superior efficiency over the present
techniques for testing positive realness, There
is an apparent analogy between the obtained alge-
braic criteria for positivity (nonnegativity) of
a real polynomial and the classical Routh-Hurwitz
criteria., Therefore, much remains to be done to
exploit this analogy and arrive at new important
results,
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Summar

A procedure for desiguing suboptimal control-
lers for linear regulator ¥ystems is presented.
The suboptimal control law id assumed to be a
linear function of the system dutputs. The form
of the time variation for the ousput-feedback gain
matrix is selected arbitrarily, an¥ the free con-
troller parameters are adjusted to mnimize the
maximum absolute degradation of systel performance.
An algorithm for computing the controllsr para-
meters is discussed, and an extension of “the algo-
rithm which corresponds to a modified version of
the original problem is proposed.

Introduction

The linear regulator is one of the most exten
sively studied problems of optimal control theo-
ry. The importance of linear regulators stems
from the fact that many practical control prop

vector at every instant of time.
the state but the output vector
available for measurement. Alp
or2, or to obtain
that is best in

s, in many cases
these schemes are not ecopgmically justifiable.

Recently, the design/6f suboptimal controls

which are easy to 1mp1';-nt and minimally inferior
in some sense to optim#l controls has attracted
the attention of sevefral investigators.
Schoenberger? has gifen solutions to a class of
problems in which ¢ither the initial state, or a
probability distrfbution of initial conditions is
known. Meditch? has proposed an approximate
method of decoypling complex systems which simpli-
fies the a:m?.'ation of the time-varying feedback
gains. Koildniemi determines the unknown para-
meters of yHe feedback control to minimize the
maximum degradation of the system performance over
the admisgible initial states. Rekasius® proposes
a control law that minimizes the maximum (with
respect/to all initial states) relative deviation
in the/value of the performance measure with re-
spect/to the optimal performance measure. Another
apprdach is to assume that the admissible initial
states are uniformly distributed on the unit hyper-~
spflere and determine suboptimal controls that mini-
mize the expected value of the performance measure
over the admissible initial states. Salmon8

pd
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suggests that the Loritroller parameters be found
by minimaximizing phe performarice measure or the
relative or abg

This pag

er/parameters that minimize the maximum absolute
egradation of system performance.

The Optimal Linear Regulator Problem

In the optimal linear regulator problem the
state and output equations are given by

) a

2

At) x(t) + B(t) ultd

SlE) x(t) "(2)

¥t

where xXt) is the n-dimensional state vector, ;
u(t) is dhe m-dimensional unconstrained control
vector, y(&) is the r-dimensional output vector,
and A(t)y BXt), and C(t) are matrices whose ele-
ments are asdumed to be continuous functions of
time. The proRlem is to determine the control
u*(+) that minidizes the performance measure

TG sto,u()) = B XT(ep) H xlte)

£
+ % Jtol:ggT(t) QUENx®)

+ 3T R ute) | at &)
where £t and t. > t_are fiked initial and final
times, respectively, x =‘§(hu) is the initial
state, H is a real symmetric positive semi-defi-
nite matrix, Q(t) is a time-var¥ing real sym-
metric positive semi-definite makrix, R(t) is a
time-varying real symmetric positive definite
matrix, and the final state x(tg) 1§ free.
Kalmanl»2 has shown that the optimal\control ex-
ists and is given by

u*(t) =R71(t) BT(t) K(t) x(t)
8 _pr(e) x@) »

where K(t) is the unique symmetric positive ddfi-
nite solution of the matrix Riccati equation

k() = -K(t) AG) - AT(6) K(t) - Q)

+ K(®) B BTN BT@) k() (5)



